Bi-Lipschitz characteristic of quasiconformal self-mappings of the unit disk satisfying bi-harmonic equation

نویسندگان

چکیده

Suppose that $f$ is a $K$-quasiconformal self-mapping of the unit disk $\mathbb{D}$, which satisfies following: $(1)$ biharmonic equation $\Delta(\Delta f)=g$ $(g\in \mathcal{C}(\overline{\mathbb{D}}))$, (2) boundary condition $\Delta f=\varphi$ ($\varphi\in\mathcal{C}(\mathbb{T})$ and $\mathbb{T}$ denotes circle), $(3)$ $f(0)=0$. The purpose this paper to prove Lipschitz continuos, and, further, it bi-Lipschitz continuous when $\|g\|_{\infty}$ $\|\varphi\|_{\infty}$ are small enough. Moreover, estimates asymptotically sharp as $K\to 1$, $\|g\|_{\infty}\to 0$ $\|\varphi\|_{\infty}\to 0$, thus, such mapping behaves almost like rotation for sufficiently $K$, $\|\varphi\|_{\infty}$.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hyperbolically Bi-Lipschitz Continuity for 1/|ω|2-Harmonic Quasiconformal Mappings

We study the class of 1/|w|-harmonic K-quasiconformal mappings with angular ranges. After building a differential equation for the hyperbolic metric of an angular range, we obtain the sharp bounds of their hyperbolically partial derivatives, determined by the quasiconformal constant K. As an applicationwe get their hyperbolically bi-Lipschitz continuity and their sharp hyperbolically bi-Lipschi...

متن کامل

On Harmonic Quasiconformal Self-mappings of the Unit Ball

It is proved that any family of harmonic K-quasiconformal mappings {u = P [f ], u(0) = 0} of the unit ball onto itself is a uniformly Lipschitz family providing that f ∈ C. Moreover, the Lipschitz constant tends to 1 as K → 1.

متن کامل

Bi-Lipschitz Mappings and Quasinearly Subharmonic Functions

After considering a variant of the generalized mean value inequality of quasinearly subharmonic functions, we consider certain invariance properties of quasinearly subharmonic functions. Kojić has shown that in the plane case both the class of quasinearly subharmonic functions and the class of regularly oscillating functions are invariant under conformal mappings. We give partial generalization...

متن کامل

Bi-lipschitz Sufficiency of Jets

We give some theorems of bi-Lipschitz or C sufficiency of jets which are expressed by means of transversality with respect to some strata of a stratification satisfying the (L) condition of T. Mostowski. This enables us to prove that the number of metric types of intersection of smooth transversals to a stratum of an (a) regular stratification of a subanalytic set is finite.

متن کامل

2 00 9 Invariance of Regularity Conditions under Definable , Locally Lipschitz , Weakly Bi - Lipschitz Mappings

In this paper we describe the notion of a weak lipschitzianity of a mapping on a C stratification. We also distinguish a class of regularity conditions that are in some sense invariant under definable, locally Lipschitz and weakly bi-Lipschitz homeomorphisms. This class includes the Whitney (B) condition and the Verdier condition.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Indiana University Mathematics Journal

سال: 2021

ISSN: ['1943-5258', '0022-2518', '1943-5266']

DOI: https://doi.org/10.1512/iumj.2021.70.8439